Média móvel de dados de séries temporais (observações igualmente espaçadas no tempo) de vários períodos consecutivos. Chamado de movimento porque é continuamente recalculado à medida que novos dados se tornam disponíveis, ele progride caindo o valor mais antigo e adicionando o valor mais recente. Por exemplo, a média móvel das vendas de seis meses pode ser calculada tomando a média das vendas de janeiro a junho, depois a média das vendas de fevereiro a julho, depois de março a agosto, e assim por diante. As médias móveis (1) reduzem o efeito de variações temporárias nos dados, (2) melhoram o ajuste dos dados para uma linha (um processo chamado suavização) para mostrar a tendência dos dados mais claramente e (3) realçam qualquer valor acima ou abaixo do valor tendência. Se você está calculando algo com variação muito alta o melhor que você pode ser capaz de fazer é descobrir a média móvel. Eu queria saber qual era a média móvel dos dados, então eu teria uma melhor compreensão de como estávamos fazendo. Quando você está tentando figurar para fora alguns números que mudam frequentemente o melhor que você pode fazer é calcular a média movente. Na prática a média movente fornecerá uma boa estimativa da média da série de tempo se a média for constante ou mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo medirá os efeitos da variabilidade. A finalidade de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série de tempo usada para ilustração juntamente com a demanda média a partir da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Depois, ela se torna constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que a qualquer momento, apenas os dados passados são conhecidos. As estimativas do parâmetro do modelo,, para três valores diferentes de m são mostradas juntamente com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas de média móvel para a direita por períodos. Uma conclusão é imediatamente aparente a partir da figura. Para as três estimativas, a média móvel está aquém da tendência linear, com o atraso aumentando com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um tempo específico no valor médio do modelo eo valor médio predito pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo eo viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior será a magnitude do atraso e do viés. Para uma série continuamente crescente com tendência a. Os valores de lag e viés do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada deslocando as curvas para a direita. O atraso e o viés aumentam proporcionalmente. As equações abaixo indicam o atraso e o viés de um período de previsão para o futuro quando comparado aos parâmetros do modelo. Novamente, estas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel baseia-se no pressuposto de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Como as séries de tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para tais resultados. Podemos também concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menor. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para fazer a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero ea variância do erro é composta por um termo que é uma função de e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com média constante. Este termo é minimizado tornando m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar a previsão responsiva às mudanças, queremos que m seja o menor possível (1), mas isso aumenta a variância do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de Previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro de média móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto a partir da média móvel no tempo 0 é 11.1. O erro é então -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente. 7 Armadilhas de médias móveis Uma média móvel é o preço médio de um título durante um período de tempo especificado. Analistas freqüentemente usam médias móveis como uma ferramenta analítica para tornar mais fácil seguir as tendências do mercado, como os valores mobiliários para cima e para baixo. As médias móveis podem estabelecer tendências e medir o momentum. Portanto, eles podem ser usados para indicar quando um investidor deve comprar ou vender um determinado título. Os investidores também podem usar médias móveis para identificar pontos de suporte ou resistência, a fim de avaliar quando os preços são susceptíveis de mudar de direção. Ao estudar os intervalos comerciais históricos, pontos de suporte e resistência são estabelecidos onde o preço de uma garantia reverteu sua tendência de alta ou de baixa, no passado. Esses pontos são então usados para fazer, comprar ou vender decisões. Infelizmente, as médias móveis não são ferramentas perfeitas para estabelecer tendências e apresentam muitos riscos sutis, mas significativos, para os investidores. Além disso, as médias móveis não se aplicam a todos os tipos de empresas e indústrias. Algumas das principais desvantagens de médias móveis incluem: 1. Médias móveis desenhar tendências de informações passadas. Eles não levam em conta mudanças que podem afetar o desempenho futuro de uma segurança, como novos concorrentes, maior ou menor demanda por produtos na indústria e mudanças na estrutura gerencial da empresa. 2. Idealmente, uma média móvel vai mostrar uma mudança consistente no preço de um título, ao longo do tempo. Infelizmente, as médias móveis não funcionam para todas as empresas, especialmente para aqueles em indústrias muito voláteis ou aqueles que são fortemente influenciados por eventos atuais. Isto é especialmente verdadeiro para a indústria de petróleo e indústrias altamente especulativas, em geral. 3. As médias móveis podem ser distribuídas em qualquer período de tempo. No entanto, isso pode ser problemático porque a tendência geral pode mudar significativamente dependendo do período de tempo utilizado. Os prazos mais curtos têm mais volatilidade, enquanto os períodos de tempo mais longos têm menos volatilidade, mas não contam com novas mudanças no mercado. Os investidores devem ter cuidado com o prazo que escolherem, para se certificar de que a tendência é clara e relevante. 4. Um debate em curso consiste em saber se deve ou não dar mais ênfase aos últimos dias do período. Muitos acham que os dados recentes melhor refletem a direção da segurança, enquanto outros acham que dar alguns dias mais peso do que outros, incorretamente tende a tendência. Investidores que utilizam métodos diferentes para calcular médias podem traçar tendências completamente diferentes. (Saiba mais em Simple vs. Exponential Moving Averages.) 5. Muitos investidores argumentam que a análise técnica é uma maneira sem sentido de prever o comportamento do mercado. Eles dizem que o mercado não tem memória eo passado não é um indicador do futuro. Além disso, há uma pesquisa substancial para apoiar isso. Por exemplo, Roy Nersesian conduziu um estudo com cinco estratégias diferentes usando médias móveis. A taxa de sucesso de cada estratégia variou entre 37 e 66. Esta pesquisa sugere que as médias móveis só rendem resultados cerca de metade do tempo, o que poderia fazer com que eles sejam uma proposta arriscada para efetivamente timing do mercado de ações. 6. As seguranças mostram frequentemente um teste padrão cíclico do comportamento. Isso também é verdadeiro para as empresas de serviços públicos, que têm uma demanda constante por seu produto ano a ano, mas experimentam fortes mudanças sazonais. Embora as médias móveis podem ajudar a suavizar essas tendências, eles também podem ocultar o fato de que a segurança está tendendo em um padrão oscilatório. (Para saber mais, veja Manter Um Olho Em Momentum.) 7. O objetivo de qualquer tendência é prever onde o preço de um título será no futuro. Se uma segurança não é tendência em qualquer direção, não fornece uma oportunidade de lucrar com qualquer compra ou venda a descoberto. A única maneira que um investidor pode ser capaz de lucrar seria implementar uma estratégia sofisticada, baseada em opções que depende do preço permanecer estável. A linha inferior As médias móveis foram consideradas uma ferramenta analítica valiosa por muitos, mas para que toda a ferramenta seja eficaz você deve primeiramente compreender sua função, quando a usar e quando não a usar. Os perigos aqui discutidos indicam quando as médias móveis podem não ter sido uma ferramenta eficaz, como quando usadas com títulos voláteis, e como podem ignorar certas informações estatísticas importantes, como padrões cíclicos. Também é questionável como as médias móveis eficazes são para indicar com precisão tendências de preços. Dadas as desvantagens, médias móveis podem ser uma ferramenta melhor usada em conjunto com outros. No final, a experiência pessoal será o último indicador de quão eficaz eles realmente são para o seu portfólio. (Para obter mais informações, consulte Médias móveis adaptativas para resultados melhores)
Comments
Post a Comment